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SUMMARY

The characteristics of optimum fixed-range trajectories whose siructure is constrained o climb, sieady
cruise, and descent segments are derived by application of optimal control theory. The performance funciion
consists of the sum of fuel and time costs, referred to as direct operating cost (DOCY.  The state variable ic
range to go and the independent variable {s energy. In this formulation a cruise segrent always ococurs at ithe
optimum cruise energy for sufficiently large range. AL short ranges {400 n. wi. and less), a cruise seament
may also occcur below the optimum cruise energy. The existence of such a cruise segment depends primarily on
the fuel flow vs thrust characteristics and on thrust constraints. If thrust 75 a free control variable along
with airspeed, it is shown that such cruise seqgments will not generally cccur. If thrust is constrained to
some maximum value in ¢limb and to some minimum in descent, such cruise segments generally will occur. The
algorithm has been implemented in a computer program that can be incorporated in an airline flight planning
system or can serve as a basis for an onboavrd implementation. The various features of the program are
described and the characteristics of the optimum trajectories arve T1lustrated with a set of example trajec-
tories for an aircraft medel representative of the Boeing 727-140.

HOMENCLATURE
Ce fuel cost factor, dollars/kg {dollars/ib} T thrust, ko (1b}
Cy time cost factor, doliars/hr Tup’Tdn cTimb and descent thrusts, respectively
b drag force ¥ time
B0, first and second partial derivatives of tc time at end of climb
v drag with respect to airspeed
&y time at start of descent
dc cryise distance
tf total mission time
d\c desired distance to fly
¥ true airspeed
du ’ddn total ¢limb and descent distances,
P respectively VC cryise speed
3 total aircraft energy in units of ajtitude vup,vdﬁ climb and descent airspeeds
E. crufse or maximum energy Vi wind speed along fiightpath
E. optimum cruise energy Vw ,Vw wind speads in ¢limb and descent segments,
apt up dn  respectively, Tunctions of altitude
Ei,Ef initial and final energy W aircraft weight in kg {1b)
£ rate of change in energy We total mission fuel, ko (1b)
g acceleration of gravity wi initial aircraft weight, kg {(ib}
H Hamiltanian, dollars per unit of energy Woor reference weight in climb fuel relation
f altitude, w (ft) i fuel flow rate, ka/br (1b/hr)
Iup’idn components of the Hamiltonian X distance Flown, n. mi.
4 value of performance function, ) ; : R .
dollars/kq {doliars/1b) kﬁp’xdn climb and descent distances., running variables
s : & parameter defining divection of control
KIAS indicated airspeed, kaots Derturbations
Kap’Kdn $2er§nég under the minimization eperator . flightpath angle, radian
. . R sy 1imb and descent flightpath angles, S0
Ky constant in climb fuel velation Tup*Ydn EQQZ?gfﬁiadfzzen g RGIES, vesy
L HifL force R Tength of contrel perturbation
P Fn?igigﬁd of cost function or cost per AT, AY thrust and speed perturbations rvelative to
urit tlme cruise conditions
SFC thrust specific fuel consumpliion pey hr X{Ec} cruise cost at cruise energy E,,
Tlars/n, mi. -
SFE nth partial derivatives of SFC with dotlars/n. mi

g=}ﬁ raspact to {+]

Index categories: Flight Opevetions; Buidance and Control; Havigation; Communication; Traffic Control.




5.7

=

throttle setting i cruise cost per unit distance

R throttle settings in climb and descent, 3 optimum cruise cost over aill energies,
up® dn ) . opt . :
respectively per unit distance
¥ costate variable
INTRODUCTION

The continuing rise in aivrline operating costs due to escalating fuel prices and other inflaticnary fac-
tors has stimulated interest in fechniques for trajectory optimfzation. Recent work has focused on the deri-
vation of simplified algorithms for computing trajectories with specified vange. Such an algorithm was
described in Ref. 1. The trajectories calculated by this algorithm, uniike those obiained by classical
performance optimization, winimize an integral performance measure such as total mission fuel cost.

Another problem that has received attention recently concerns the eptimaiity of steady-state cruise
flight. Steady-state cruise is generally not optimun for minimum fuel serformance {(Ref. Z), but the perfor-
mance penalty of steady-state cruise is unknown because the sctual nonsteady or cyvelic optimum ¢ruise has not
been computed to date. However, iT the steady-state cruise satisfies first-order necessary conditions, Speyer
{Ref. 2} shows, in an exampie, that the performance improvement of & particular (though noneptimum) cyclic
cruise i about 0.1%. This improvement, if representative of the optimum cyclic cruise, is not economically
significant. Mevertheless, the determination of the optimum eyclic cruise poses an interesting and unsolved
ayohlen.

Even if economically significant, cyclic cruise could not be used in airline operation because it is
incompatible with existing alr traffic control procedures, disconcerts passengers, and decreases engine 1ife.
Uptimum trajectories, to be compatible with fypical airline practice, should consist of a climbout, & steady-
state cruise, and a descent. Thus, at least for commercial airline applications, the optimum frajsctory must
be sefected from a set of trajectories that is limited a priovi to such types.

A formulation of the trajectory optimization problem that constrains the admissible trajectories to those
containing climb, steady cruise, and descant was given in Ref. 1. In this formulation, energy heignl was used
as the independent or timelike variable in climb and descent, thus forcing energy to change monotonically in
these segments. It was shown that the use of energy as the independent variable eliminates the integration of
a separate adjoint differential equation, thus siwplifying the numevical solution of the optimel control probe
lers, Therefore, this formulation is also adopted here.

An evaluation of the constrained optimum trajectories by aivline operators indicated an interest in the
additional constraint of setting the thrust to some wmaximum during ciimb and to idle during descent to reduce
pilot workload of flying the trajectories. An examination of this procedure raised the following questions
that are investicated here. How do the constraints on thrust and, more generally. the asrodynamic and propui-
sion characteristics affect the structure of the trajectories? lbnder what condition is the constrained thrust
orocedure optimum? What performance penalty is incurred by the constraint on thrust?

The avionics and aircrati industry is currently developing onboard performance computer systems to assist
the flight crew in minimizing fuel consumption and operating costs. Because of its modest computational
vequiremants, the algorithm described herein can be implemented in an onboard computer. This paper briefly
describes a computer implementation of the algovithm and altso discusses the characteristics of several optimum
trajectories computed for the Boeing 727-100 aircraft.

OPTIMAL CONTROL FORMULATION

As stated in the Introduction, we assume at fhe outset that the optimum trajectories have the structure
shown In Fig. 1. This structure consists of climb, crufse, and descent segments, with the afrcraft energy
increasing monotonically in ¢limb and decreasing monctonically in descent., MNeglecting fiightpath-angle
dynamics and weight Toss due to fuel burn, the point mass squations of metion for flight in the vertical plane
arg

{1/gi{dv/dt) = [{T - D}/H] - sin v M
dhfdt = ¥ sin v {2}
de/dt = ¥ cos v # ¢w = Y Vw {3)

with the constraint L = %W cos v.  The along-Irack wind component ?w may be a function of altitude, but
accelerations due to wind shears as well as the vertical wind component can be neglected in this analysis.

In airplanes, untike rockefs, the rate of change of weight due to fuel burn introduces negligible dynamic
effects in the trajectory optimization. HNevertheless, the effect of weight loss on a trajectory is fmportant
But can be accounted for without adding another state variable by techniques described in the section on
computer implementation. I energy i¢ defined as

E=h o+ (1/2gW2 {4}
then the familiar velation for the rate of change in energy is obtained by differontiating fa, {4 with res-
H

pect fo time and substituting the right-hand sides of Fgs. (1) and (2} In place of d¥/dt and dh/dL,
respectively:

(53]
St

Eosodbzdt = [T - vy {

&
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The cost function to he winimized is chosen as the direct operating cost of the mission and consists of
the sum of the fuel cost and the time cost:
R (6}

w§e$e s; and ¢y are the unit costs of fuel and time, respectively. Setiing ceg = 0 resylts in the famfliar
minfmum fuel performance function. In integral form, the cost function bocomes

—
il
it

t te
J = f f (Weop + oy )dt 2 f P odt
o - o

It is assumed that the Uime to fly, te, 15 a free varisble, but the distance to fly is a specified quan-
tity de. Foliowing the formulation in Ref. 1, we now write the total mission cost as the sum of the costs
for the three segments of the assumed trajectory [f1lustrated in Fig. 1},

te te
J o= j; P odt + (df - dup - ddn)a + j; P dt (8)
R md JU—
climb criise descent
cost cost cost
where » designates the cost of cruising at a given energy E.. MNext, we transform the integral cost terms
in Eq. (8} by changing the independent variable from time to energy, using the transformation dt = dE/E:
EC , Ee R
= b - - 4 i
J J; (?fE§E>U)dE + (df dup ddﬁ}ﬁ + J; (P/zﬁig<33é5 (9}
i f

wheve 4 and Eg are the given initial climb and final descent energies, respectively. The transformation
uses the assumption that the energy changes monotenically in climb and descent. This places strict inequality
constraints on E, as shown in Eg. {(9). Also in Eg. (8). the integration limits have been reversed in the
descent cost term. In this Tormulation the cost function is of mixed form, containing two integral cost terms
and a terminal cost term contributed by the cruise segment.

With the change in independent variable from time to energy, the state equation (Eq. (5)) is eliminated,
Teaving Eq. {3) as the only state equation. Furthermore, we note that the performance function {Eg. (9)}
depends on the distance state x only through the sum of the climb and descent distances dyy + dgy. There-
fore, the state equation for the distance is rewritten in terms of this sum as:

d{xy, * Kgy)/dE = (vup . ku[)/é]ﬁ}a + (vdn + den)/’%@ (10)

Here the transformation dt = dE/E was used again. Also, £q. {10) provides for independence in the choice of
climb and descent speeds Vyp and Vgn  and the wind velocities V¥, —and ¥, . Wind velocities in climb and

up i . cr s
descent are allowed to be independent of each other; gensrally, different wind conditions will prevail in
physically different locations of ¢limb and descent. The wind velocities can also be altitude-dependent. The
effect of altitude-dependent winds on the opiimum trajectories is discussed in Ref. 3.

Necessary conditions for the mirimization of Eg. (9), subject to the state equation {Eq. {(10}) are
obtained by application of optimum contrel theory {see, e.g., Ref. 4, p. 71}. Then the following relations
are obtained for the Hamiltonian and costdte equations, respectively:

b Vup ¥ ngp Vdn + den
Ho= min (g) * (Tft) P (1)
VapsVan | Es0 - MEVE g Eleg
Tup>Tdn
ﬁﬁ:/dE = —{%HJB{XUP + xdn)] = 3 (-!2)

The right-hand side of the Hamiltonian equation is minimized with respect to ftwo pairs of conirol vari-
ables, one pair applicable to climb {Vyp and =yp}, the other pair to descent {Vgn and =gp). Since each term
under the minimization cperater in Eq. {11} contains only one of the two pairs of control variables, the
minimization simplifies into two independent minimizations, one inveiving climb controls, the other, descent
controls.  Also, since the right-hand side of the costate equation (Eg. (12)) is zers, 3 15 constant.

TRANSYERSALITY CONDITIONS

The transversality conditions are additional necessary conditiens that depend on the end-point con-
straints of state varisbles [Ref. 4}, The basic constraint in this problem is that the range of the trajec-
tory be df.  However, de 15 a2 parameler in the transformed cost function, £q. {9}, and not z state variable.
The final velue of the state varfable dyp + dgn s, fn this formulation, subject only to the inequality
consiraint dyp + ddp < df.  This cenpstraint is, of course, necessary Tor a physically meaningful resull.
This inequality constraint can be handled by =solving two oplimization problems, one completely free
{dup + ddn < d¢), the cther constrained {dup + ddn = df). and then choosing the trajectory with the lowest
cost. Physically, the comparison is between a trajectory with a cruise segment and one without a oryise
segment.  Congsidering first the free terminal stale case, éﬂﬁ +dge < df, we obtain the following relation
for the final valug of the costate g
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. - |
(B - e - 2y = Xl \ (13)
a3 ) = _.W_M;:?_._, o ! T E]:S.'
o u§x§p + xdﬁ |
LE=E d

: :‘_C’x&px

up*dn ™ dn

This {s the transversality condition for the free final state problem with terminal cost [Ref. 4). If shows
that the constant costate value iz The negative of the cruise cost.

Hexi, consider the case of no cruise segment. Than, the middle term of Eq. {9) drops cut and the perfor-
mance function containg only the integral cost terms. This is the case of the specified final state
df = dyp * ddns the Corresponding fransversaiity condition yields (E.} = ¢g. In practice 1 is not necessary
to compute the constrained terminal state frajectory if a valid free terminal state trajectory exists, i.e.,
one for which dg > dyp + ddn, since the addition of a tevminal constraint can only increase the cost of the
trajectory. Therefore, this case is not considered further here.

In both cases the choice of costate defermines a particular range. Since the functional relationship
between these variables cannot be determined in closed form, 1T is necessary to iterate on the cosiate value
to achieve a specified range dg.

The Tast necessary condition appiicable te this formulation is obtained by making use of the fact that

the final value of the timelike independent variabie E s fres. Its final value is the upper Timit of
integration Eq. in Eg. {9). Application of results in Ref. 4 provides the following condition:

(H + {3[{df “d ddn}a(E}E/EE}>E o= (14)

which, when evaluated and simplified. becomes

L]
et

{H s Edcid}!dE}]}Ezgc = g (1

where dc is the ¢ruise distancs.

Condition (1%) has the following physical interpretation. The value of the HamiTtonian H evaluated at
cruise energy E. 15 {after substituting £g. {13} Tnto {11}) the minimum fncrement in the sum of climb cost
and descent cost o make a unit increment in cruise energy. The product dC{dkjdE}E:E is the increment in

cruise cost resulting from a unit change in cruise energy. Condition {1%) regquires the optimum trajectory to
be sich that the sum of these fwo increments be zers for a given crufse distance d,. apgd cruise energy Ee

DEPERDENCE OF OPTINMUM TRAJECTORIES ON RANGE

Equation {15}, together with knowledge of the salient characteristics of the cruise cost 3 and the
Hamiltonian H, can be used to determine the structural dependence of the optimum trajectories on range.

Cruise cost at a cruise enevgy £ and Cruise speed V. is computed from the relation

(T
i

WEY,) = [P(TLELY )I/(Y, + V) with constraints {L - g] (16}

where the dengminator is the ground speed in the flightpath direction. txamination of the term containing
in the relatien for the pevformance function (%) shows that the value for & should be as small as possible
at each cruise energy to minimize the total cost J. Therefore, the cruise-speed dependence of i is
eliminated by minimizing the right side of Eg. {16) with respect to Ve

j—
ha
-

R(EC} = T;n P(T,EC,HC)f{VC + VW)
C
In this paper, 2 and ¥ are always assumed to be the optimum cruise cost and cruise speed, respectively, at
a particular cruise enerqy e
Except in high wind shear, the cruise cost as a funciion of cruise energy exhibits the roughly parabolic

shape shown in Fig., 2. For subsonic transport aivcratt, the minimum of the cruise cost with respect to energy
occurs cliose Lo the maximum energy boundary. This characteristic of the cruise cost prevails for sssentialtly
311 values of the performance function parameters o and . The gquantities defining the optimun cruise con-

ditions are ECQ . amnd Rapt’ I Eg. {18), the derivative of fthe cruise cost funcfion wmultiplies the cruise
g : . . . . . .
distance. Except under extreme wind shear conditions, the derivative is monolonic and crosses the zero axis
at E.= E .
© 0 TCopt

By distributing the minimization aperator in Zg. {11) and substituting Eg. {13) in fo. {11}, H can be
decomposed into climb and descent compenents as follows:
ure 3 - P S
H[tanaﬁcg] IUS Ldn R
where
L & O
Toup “gSJ

1. = @i} e S 1,.=

L.
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In the preceding section, the Hamiltonian, evaluated at [ = E., was interpreted as the cost penalty to
achieve a unit increase in cruise energy. Extensive numerical studies of Eg. (18} for several comprehensive
models of subsonic turbofan aircraft show HIE.,x{E;}] > 0 for E. < Ecapt‘ Moreover, the minimum cost

penalty for increasing energy I, 15 always positive and that for decreasing Iy, 1s negative, but the sum
has never been found negative for models of currently used turbofans. While these characteristics have been
established for several aircraft models, they are not intended to Jmply a generalization to all airgraft since
no physical laws prevent H fram being negative.

Consider first the case where H[Ec,»{Ec}] > 0. Then Egq. {15} can be sclved for the cruise distance dg:

d = HEH )/ (20)

Since dn/dE <00, but approaches zero as Ep ~ Eco ., the cruise distance must increase without iimit as

ot
Ep o+ Ecopt' Our numerical studies have shown that the value of H tends to decrease as E. increases, but
not enough to change this trend. Figure 3 shows the resulting family of trajectories, assuming H >0 for
all values of .. In this case, interestingly, nonzerc cruise segments occur at short ranges and at energies
below the optimum cruise energy Ecopt* Optimum cruise is approached asymptotically at long range.

Consider next the case where H[En,2(Eec}l = 0. Then de = 0, i.e., no cruise segment s present For
dA/qE < 8. stever,_Eq. (15} shows that dp can be nonzero dr/df = 6. This implies that, for H = 0,
cruise flight is optimum only at the optimum cruise energy E._ .. Figure 4 shows the family of trajectories
for this case, opt

THRUST OPTIMIZATION FOR MINIMUM FUEL TRAJECTORIES

Evaluation of the Hamiltonian equation would be simplified if one of the two pairs of control variables,
airspeed or thrust, could somehow be eliminated o« pricr? from the minimization. Since the pair of throttle
settings, wyp and wgp, is thought to be near its limit, we shall look for conditions where extreme settings of
the throttle are optimum. The remainder of this paper examines only the minbwum fuel case cf =1 and cy = 0,
with winds set to zero to simplify the derivation. However, the results can be extended to the more general
cost function.

For minimum fuel performance, the two terins in the Hamiltonian Eq. {79} become

Iup « ) mjs Kup s Lin = . mfg Lan {21a)
upup dn*'dn
whers
Wew oy T We - Y
P N L (21b)
up {7~ DIV 70 drn T - DIV, W

UP" 3Ty 3D Tlag, <0
. An accurate model for thrust and fuel flow generally includes the functional dependencies, T{(s,V,h) and
Welw,V,h). In addition, these functfons must be corrected for nonstandard temperatures and hleed losses.

In previgus work on aircraft trajectory optimization {Ref. 5}, a simpler model for fuel flow and thrust
was used:

Nf = TSFC(V,h) : Yy,hy<7s<T

(o) (22)

Tmin
The critical assumption in Eq. {22} is independence of the specific fuel consumption Spp  from thrust.

The virtue of this model Ties in the insight it yields into the minfmum fuel problem. If Eg. (22) is substi-
tuted into Egs. (21b), one obtains

_Sec [ Tup = O/Sechy g o oret L Tan T PPRC e (23)
up ¥ T 0D ? dn =V g - B
up up ‘}'up>£) dn dn Tdn<D

Far any fixed values of Vyp or Vdn, the operand functions for the winimization of Kyp and Edn ave
hyperbolas with poles at T = D, The pumerator zero must be to the left of the pole on the thrust axis for 3
energies less than cruise energy. Figure 5 ig a typical plot of these functions. Clearly, maximum thrust
minimizes Kyp and idfe thrust minimizes Kdn for any E < E., proving that the Timiting values of thryst
are optimum for this propulsion model throughout the climb and descent trajectories. This result also implies
that the departure from the extrame thrust values found for the mere general propulsion wodel is directly
attributable to the nonlinear dependence of fuel flow an thrust. Conversely, the need for throttle setiing
gptimization can be determined @ priord from the Tuel flow vs thrust gependernce for a particular engine. Such
data are found in the engine menufaciurer’s performance handbook.

EVALUATION OF HAMILTONIAN AT CRUISE

We have seen in a preceding section that the value of the Hawiltonian computed at cruise energy £
detarmines the siructura of the frajeciories near cruise. Here we shall relate the existence of <ruise balow
Ecopt to specific engine and aerodynamic model parameters by substituting truncated Tayler series expansions
of fuel flow and drag as functions of airspeed and thrust into the expressien for the Hamiltonitan. The loca-

tion of the minimum with respect to the controls as well as the value of H can then be detersiined as Tunc-
tions of the Taylor series coefficients at E = E..
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How shoutd one pick the point in the contrel space zbout which to make the expansion? Computational
experience in Refs. 1 and 3 has shown that the minimum iz in the neighborhoed of the optimum cruize speed and
throttle setiing, corrvesponding to the given cruise engroy. This suggests thal the cruise controls chould be
picked for the expansion point.

The fuel flow and drag functions expanded to second ovrder aboul the cruise contrsls T = TC, ¥ =V, are
fo= T+ {T #Sec b aT T 5o, sy o+ {172} + 1.5 at?
P ((;SFCT ?s;‘ e, Vor e <ESFCT c FCT?_) §
+ <TCSFC o+ gFﬂ }&V aT + inE)?CSFC , sV2 + higher-order terms (24}
v Y y
o= D{VC,EC) FO, Y+ {T/E}DVZ Y2+ higher-order terms (25}

The subscripts to Seg and D desigrate the partial derivatives with respect to the subscripted variable.
Hote that the expansion allows for a geneval fuel flow model in which specific fuel consumption can be thrust-
dependent.

Bafore substituting Eqs. (24) and {25) inte the expression for H, we observe that H s singular at
cryise with T = To and V = Vg, because both numerator and denominator ave identically zerc at that point,
Figure 6 plots the leci of the numerator and denominator zeros of Kyp and Kdn in the control space at
E = Ee. It is proved in the Appendix that the locus of numerator zeros is tangent to the locus of denominator
zeros at the optimum cruise contrels. For E < E., the two Joci have no points in common. The two loci can be
tangent but cannot cross since, otherwise, controls would exist that would make the Hamiltonian infinitely
negative, a result ruled out as physically meaningless.

Upon substituting Eos. (24) and (25} into (21) using the tangency condition {A4) derived in the Appendix,
the following expressions for Kyp and ¥gn at cruise enerqy are obfained:

s + 5 )AT - (P Sen # TS D )AV
( ¢ ?CT FC VG C FCT v

+'(1/2)(ZSFCT + TCSFCT;)aTZ + (TCSFC + SFCV)aV aT

TV

¢ (/20T Sp a0

or = W ; 1 (26)
kg 1T aV] |aT - 0, &V - (172}, 5 sV

Terins above second order have been neglected since we are investigating a small neighborhood of the cruise )
point. Expression (28} represenis Kgp 17 the quantity under the apsclute value sign is positive and Ky, if
it i3 negative.

Since the cruise peint at AT = 0 ard ¥ = 0 gives the undefined value of /0 for Fgq. (263, it is
necessary to evaluate the limit as 57 and aV  approach zerc. If the Vimit exists, it must be independent of
the divection from which the cruise point is approached. To compute the Twit and investigate the neighborhood
of the cruise peint, a polar coordinate system centered at the cruise point is used to define control pertur-
bations. fet AR and g define control perturbations 4T and 2Y  as follows:

£ = {EU + aha¥ (271
" LR . aflg + ﬁv}
B e AT = posomiemme o ¥ .
1+ {s+p 32 + (s + D 37 {28
Yieevo,) VAN )
The parameter 2 defines a direction relative to the veference direction of the line &7 = Dy a¥. The

reference divection & = 0 s excluded From the centrol space since 1t is along the direction of the locus of

T = 3 at the cruise point.

After substitubting Egs. (28} into (26} and taking the V1imit of the resulting expressions a5 4R + 0. one
obtains for any 0@

K} = iy s+ TS, } m:j = (Y ){s%yrﬂsﬁ)
Wlyimiy o CVFC T CFG Gt ¢IAFL T eTFLy

The Timit is thus well defined since 1t 18 independent of the approach divection in each region.  However, 1t
remains to be shown that the limit value is in Fact the minimum of Eg. (26} with respact to the periurbalion
controis.  This question is investigated for two cases, one for which Sgp 15 independent, and the oifher,
degendent on thrust,

e,
v
Lied

mik
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Case {A}: SFC Independent of Thrust

Along the direction defined by AV = 0, i.e., along the thrust direction, Eq. (23} can be used directly
to determine the dependence of the functions on Tup and Tdpy under the minimization operator. Since at
VeV, D(VC,EC) = Tt = {A/SFC}VC, Ea. {23} reduces to

K.~ (N/VC)SFC - Ky

e %
up = (W/VC}SFC {30}

n
showing that, at the cruise speed V¢, these functions are independent of thrust. This result is not restricted
to small perturbations relative to the cruise thrust., Ajlong other divections, the truncated Taylor series

form (Eq. {76)) must be used. After setting the zero all thrust-dependent derivatives and substituting
Eqs. (28} into (26}, the following expression is obtained.

2. (1] +D,) + T35 )R’
+1 + unic\’m;_ﬂ_ﬁiwﬂ%m;ﬁ
K 1a z
up ) E"islrg B}Q!SFC T+ (p+ 9V) (31
VSR T D, o ! )
“dn [ w2 -
| 2is[y1+ (8 + D)7
b ! 4

where the positive sign applies fo Kup and the negative sign fo Kan - The characteristics of these functions
depend on the drag and specific fuel consumption derivatives. The drag derivatives Dy and D, are both

positive since the aircraft will certainly operate on the "front" side of the thrust-required curve. The
dependence of Spp on speed for a typical, currently in-service turbofan engine at cruise energies exhibits
& stight upward curvature above Mach 0.4 {as shown %n Fig. 7), implying that both SFCV and Sgcyg are

positive in the range of interest between Mach 0.4 and 0.9, The slight curvature of Spp  indicates that a
quadratic function can accurately modei fthe Mach number dependence of Sy in the Mach range of interest and
not Just in a small neighborhood of the expansion point. Also, at typical cruise conditions, one finds that
sz > §ZS;CyDv + ?CSFCUZ}. Therefore, for any =, the denominator of Eg. (31) goes to zero before the

numerator does as  sR s increased from an initial value of zerg. Moreover, the slope of the operand function
with respect to 4R increases as £ - 3. The effect of 4V can be neglected since Vg »» aV.

These cbsarvations lead to the conclusion that the functions fn Eq. (31} slope upward in all directions
as 4R increases, except in the direction parallel te the thrust axis, along which the slope is level.
Figure & shows a family of plets of the operand functions as g varies over its range. The limiting values of
these functions at the cruise point {(sW/Y.)Spc are therefore also the global minimums, and the value of the
Hamiltonian, which is the sum of the two components, is zero. At the cruise energy, furthermore, the optimum
climb and descent speeds are equal to the optimum cruise speed. The optimum climb and descent thrusts at that
point are arbitrary since the Hamiltonian is independent of them.

By applying these results to Eg. (20}, it now follows that the structure of the optimum trajectories near
crufse 1is given by the family of trajectories in Fig, 4. Specificaily, no cruise segment occurs except at
optimum cruise energy ECont‘

By combining results from this and the preceding secticon, the important result foliows that, for the
assumed engine model, optimum trajectories, corresponding optimum controls, and performance are not affected
by constraining the thrusi to extreme values in the climb and descent segments.

Case (B): SFC Thrust-Dependent

A complete investigation of the neighborhood of the cruise point analogous to Case {A} reguires estimates
of the various thrust-dependent derivatives in Fq. (26). However, understanding of this case can be obtained
by examining the functions in Eg. {26) only along the thrust direction, f.e., for 2V = 0. Under that
assumption, £q. {26) simplifies teo:

Ko

Korlz {(WSpe/v, [»«z + (TCSFCT/SFC) + (gﬁgfzsm)(zs,__c_r + TCSF{:TZ)] {32)
dri

where the plus sign and 2T » 0 are chesen for Kyp and the negative sign and &7 <0 for Ky

This simplified approach focuses attention on the derivatives S;gT and Sgng, which are crucial for this

case. The charvacteristics of these derivatives can be deduced from plots of Spp vs thrust (Fig. %). Thess
glots, and these in Fig. 7, were derived from the operating instructions manual of a typical in-service furbo-
fan {(Ref. &). Obviocusly, the assumpiion of a thrust-independent Spp i35 grossiy viciated for this engine
since, at low thrust values, the Spp  curves approach infinfty; i.e.. they become undefined. However, at
typical climb or cruise thrusts, correspending to the upper half of the thrust range, the variation in Spp

iz oniy about 5%.

Fuel flow 13 zlzo plotted in Fig. 9. The dashed line through the ovigin gives the best constani SFC
approximation to the fuel flow function. Comparison indicates an excellent match at high thrust, bui an error
of as much as 1200 Ib/hr (550 kg/fhr) at low thrust, For some applications the assumption of a comstant Sge
could be adeguate 3f fuel flow errovs at very Tow ov idie thrust seitings cam be tolerated. (

For the upper two thirds of the thrust range, quadratic functions provide good fits to the SFC cuvves.
?hgrefere, one cién use the second-order Taylor series expansiocn af the crujse point to estimate Spe for
fairly large deviations of thrust from cruise thrust.
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The thrust in climb or cruise is typically larger than the thrust at which Spe is a minimum in Fig. 9.
Both SFﬁT and SFCT2 will therefore be greater than zero and so will the coefficient of 4T in Eg. (32},

it follows that the slope of Eg. {32} as a functicn of At 15 greater than zero for Lyp 8nd less than zere
for Kgn. In other words, along the thrust direction these functiong have a strong minimum 4t the cruise
point whereas in Case (A) they were level along this direction. Along other directions, the investigation of
fase {A) has shown a pesitive slope. Thus, 1 thrust is an unconstrained control variasble along with air-
speed, so that the cruise point lies in the interior of the contrel region, then the cotimum ¢limb and descent
thrusts and airspeeds will converge toward the optimum cruise thrust and airspesd as the climb and descent
energies approach the cruise energy. It should be noted that this holds Ffor 231 c¢ruise ensrgies, including
those less than the optimum cruise energy, ECOpt' Since the Hamiitonian is again zevo at the cruise snergy,

it foilows that the structure of the optimum trajectories as a function of range 15 fdentical to that of
Case (A} and is llustrated by Fig. 4. Computer calculations for this case in Ref. 1, using a similar engine 4
model, showed that the thrust is efther maximum or idle for about three-fourths of the energy range between :
initial and cruise energies and then departs from the extremum values s0 as io converge smoothly fo the vatlus
at cruise as criuise energy is approached.

Consider now the case where thrust is constrained to some maximum in climb and is idle in descent. In
that case, the winimum at the cruise point is net accessible since it does not Iie in the region of permissible
contrals. Also, unlike Case (A}, the thrust dependence of Kyy and ¥gn in Eg. (23) does not disappear along
the thrust divection at V = Vg. Therefore, it is unlikely that at the minimum the sum of the two terms will
be zero. The Hamiltonian is, in fact, greater than zerp at any cruise energy. In order te show this, note in
Fig. 9 that, as thrust decresses, Spp  increases without bound. It follows that I4n will be less negative
than it would be if Spe  were thrust-independent and therefore will be insufficient to cancel Iyp at cruise
energy, resulting in a positive value for the Hamiltonian. This was shown earlier to give rise to nonzero
cruise segments below the optimum cruise energy. Thus, the structure of the optimum trajectories for the
constrained thrust case is given by the family of trajectories in Fig. 3.

COMPUTER IMPLEMENTATION
{a} Algorithm Description

The climb and descent profiles are generated by integrating the state equation {10) from the initial
energy E; to the maximwn or cruise energy E;. For this purpose, Eq. {10} is separated into its climb and
descent components, which are then modified fo include the effect of nonzero flightpath angles as follows:

= + E
dxup/dE (Vup unp)cos yup/E

= £
dxdn/dg (ydn + den)cos ydn/iE2

Fiightpath angles are not defined within the reduced dynamics of the energy state model. HNHevertheless,
during the integration of the irajectory, the flightpath angles for climb and descent, Yyp and Ydn, can be
computed by using increments of altifude and distance from two successive energy points. The use of these
computed flightpath angies in £g. (33) slightly increases the accuracy of the ¢limb and descent distance
integrations.

(33)

At each energy in the Tntegration the optimum airspeeds and thrust settings are obtained as the values
that minimize the two components of the Hamiltonian in Eg. {19). The minimization of the Hamiltonian is
carried out by the Fibonacci seapch technigue {Ref. 7). It has the advantage of using the least number of
funetion evaluations of all known ssarch technigues to lecate the winimum with prescribed accuracy and zlse is
well suited te handle tabular data. Fibonacci search is basically & one-variable minimization orocedure. It
i3 adapted here to two variables by applying the technigue to one vartable at a time while holding the otner
variabie fixed. Convergence to the winimum is achieved by cycling between the two variable several times.
Prior fo a search over a given control variable, the limits of the regions for Kyp and Kgn. which consist
of the T =0 Jocus and the dashed line with shaded border in Fig. &, ave computed o keep the search inter-
val as small as possible.

As previously explained, the choice of :  in the Hawiltonian determines the range of the trajectery.
but the exact functional dependence between 3 and range cannot be determined expiicitly for the various
weighis, wind profiles. and other parameter changes encountered in real time operation. An iterative
srocedure 15 therefore ysed and s explained in part (b} of this section.

An dmportant part of the algorithsm fnvolves accounting for the welght change due o fuel burn. The effect
gn the optimum trajectovy of the change in weight was not inciuded explicitly in the theory for reasons
greviously stated. Two methods arve used o correct the optimum trajectories for the welght change. The first
meraly integrates the fuel Flow and updates the weight in the calculation of £ during climb and descent.

This ensures that updated values of aircraft weicht ave used in the integration of fgs. {33} to generate the
clinbh and descent trajectories.

The second method modifies the walue of uwsed in the Mamiltonian. This modification involves using
the estimated weight of the aircraft at the end of climb, i.e., at energy Eo. to compuie the valwe of
rather than the welght at takeoff. It is important to use the weight at Fp rather than the weight at some

other anergy, Lo compuie  »  because the sensitivity of the optimum contrel:s to chenges ip 1 increases as
the aircratt energy approaches Eg.  The fuel consumption for the entive climb trajectory, Fug. s estimated
at the siart of climb from the empirical relation:

= K (E, - E W/ {34}

F
up e f

where K, 15 an alrcraft-dependent constant and HWe.p s & typical initial climb weight. This relation
estimates the climb fuel weight to about 10% accuracy, which is adequate for This purpose. Similariy, the
weight at the sad of cruise, 1f a cruise seawment is present, is used to compute »  for the descent optimiza-
tion.  The cruise fuel consumption, Fgp, is determined from the relation:



Fo = W /v, (35)

where W 1is the average fuel flow rate and Vg the average ground speed during cruise. The calcuiation
of the average quantities is described in Ref. 8.

The computer implementation inctudes both the free and constrained thrust cases. For the constrained
thrust case, the cruise distance is computed from £q. (20}. However, because di/dE -~ G as Ep = Ecopt’ there

is & practical limit to the use of Eg. (20}, determined by the numerical accuracy of computing da/dE for
Ee  in the neighborhood of Ecogt' A practical limit for E; is that value for which X = F.0%igpe. The

totai range of the trajectory obtained for this value of i 1s referred to as dpay. A1l trajectories
requiring longer ranges tharn dpgx are assumed to cruise at ECOpt and contain cruise segments of length

de = df ~ dyp ~ dgp, where dyy and dgny are computed for 1 = .0%igpt. In the free thrust case, numerical
difficulties can arise in minimizing Eq. {19) as E. - Ecopt' The value of 1.Gligpt has also been found to

serve as a practical criterion for computing the longest range without a cruise segment at ECopt

{b) Simplified Flow Chart

A computer program of the algorithm has been implemented in FORTRAN IV and is described in detail in
Ref. 8. The program contains one main program and 38 subroutines. There are approximately 2400 FORTRAN
instructions in the program. In this paper, the organization and major elements of the program are outlined
with reference teo the simplified flow chart shown in Fig. 10.

After reading aivrcraft 1ift, drag, and propulsion data, performance function parameters, and wind and
temperature data, the optimum cruise speeds and costs and dx/dE  are computed for a range of cruise energies
and cruise weights using Fg. {17). Cruise weight is incremenied in steps of about 5% of average gross weight.
Cruise energy is incremented in 1000-ft steps from 5000 energy-feet to the maximum or ceiling enevgy. The
results are stored in what is referred to as cruise performance tables. At each weight the cruise performance
vs energy will show a dependence as in Fig. 2. The tabTes also contain a variety of other guantities such as
fuel flow, thrust setting, Mach number, etc., that are needed to fly the trajectories. In addition, at each
weight the optimum cruise energy Ecapt and the optimum cruise cost igopt are computed and stored in

separate tables. Since these tahles contain extensive amounts of data and are time consuming to compute,
they can be permanently saved on a mass storage medium,

After reading in additional input data, two optimum trajectories referred to as the minimum and maximum
range trajectories are synthesized. The minimum range trajectory is cbtained by choosing the largest value
of 4 (called igay} stored in the cruise performance tables at the gross weight of interest. The maximum
range trajectory 1s cbtained by choosing the smallest x, namely, 1.G1A0pt, as explained in part (2}, VYalues
of » at given weights are computed by interpolating between data points in the cruise tables. The corre-
sponding ranges dyay and dwin  can now be compared with df to decide on the type of trajectory reguired,
If de > dygy. the trajectory will always contain a segment of cruise at optimum cruise energy Ecopt‘ o

fteration on x is reguired in this case since the specified range df s obtained by cheosing a cruise
segment of length dy = dy - dyp - dgn. The optimum altitude and Mach number in the cruise segment are updated
every 100 n. mi. to account for the loss of weight due te fuel burn. This is the well-known climb-cruise
technigue.

If dpip = df < dpays the maximum energy will fall below Ecopt and iteraticn with respect to » s

reguired. Here the approximately known inverse relationship between 1 and dg, filustrated in Fig. 11 for
a Boeing 727-100, is incorporated in heuristic to sminimize the iteration. Thus, the first estimate of
15 computed from

no= (A/dg) + B (36)

The constants A and B are chosen to yield g, and 1.0%igpt when df s set to dgin and dmay,
respectively. Then the trajectory is synthesized to yield the actual range d. If d 1s not sufficiently
close to dy, constants A and B are updated by using a pair of ranges and the corrvesponding pair of
A's  computed in preceding syntheses. The ranges included in this pair are selected so they enclose the
desired range and Tie closest to it. A new estimate of 1 i3 now computed and the synthesis is repeated.
Typically, after two iterations the actual range will have converged te within 5 n. mi. of the specific range
and fteration is terminated.

The optimum climb and descent trajectory is specified by storing the range, time, fuel, Mach number,
thrust setting, and altitude as a function of energy height in 500 energy-feet increments.

The computer implementation of the algorithm described here was designed for off-line use primarily as
a benchmark for evaluating various non- or suboptimum trajectories. Various simplifications are possible to
reduce the computer complexity for onboard implementation. For example, the iteration loop o achieve a
specified range need not be mechanized. This approach was used in a piloted simulation of the algorithm
{Ref. 9). In that study. the pilot played an active part in closing the loop on range.

RESULTS

The computer-implemented version of this algorithm was used to compute and to study the characteristics
of several tvpes of optimum trajectories. This section presents a summary of the results. A more compiete
discussion, including the effects of winds, nonstandard temperatures, and gross weight changes, can be found
in Ref. 8., The aerodynamic and propulsion models used in these calculations are representatives of the
Boeing 727-100 aircraft equipped with JTBG-7A engines., The time and fuel cost parameters in the performance
function Eq. (7} were chosen to be $500/hr and 6.23 cents/1b, respectively. Inflation has increased these
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parameters $ince their selection in early 1978. However, because the trajectories actually depend only
on the ratio of the parameters, the trajectories continue to be useful, especially for comparing minimum
fuel and DOC cases.

Figure 10{a} shows the altitude vs range for 100, 200, and 1900 n. mi. range mintmum DOC trajectories. .
The aircraft takeoff weight for these trajectories is 150,000 ib. Winds are assumed to be zero and atmospheric
conditions are for a standard day. For the 200-n. mwi. range, both the constrained thrust {solid lins) and the
free thrust (dashed line) trajectories are shown. Also, for the 200-n.mi. range, Fig. 10{b} shows the
corresponding altitude vs airspeed profiles.

Below 10,000 ft altitude, all trajecteries are sssentially identical in both climb and descent profiles.
At 10,000 ft both the climb and descent profiles are interrupted by short segments of almost Tevel flight.
These are the result of the 250 KIAS spead Timit imposed on the trajectory below 10,000 ft by U.S. air traffic
control vules. Thus, when the aircraft reaches 10,000 ft in ¢limb, the aircraft accelerates to the
u?iqgaérained optimum climb speed (see Fig., 12{b}). Similarly, a deceleration occurs in descent at this
4 ituce.

The constrained thrust trajectories for the 100~ and 200-n. mi. vanges contain short cruise segments
below the optimum cruise altitude of 37,000 ft. Optimal cruise altitude is used for ranges longer than about
250 n, mi. For the relatively Tong ranage flight of 1000 n. wi., the optimum cruise altitude increases at a
rate of approximately 2.5 ft/n. wi. of croise distance due to fuel burnoff.

The free thrust trajectery for the 200-n. wmi. range does net contain a cruise segment. However, the
difference between the ceonstrained and free thrust profiles is slight and is noticeable only above 25,000 .
Below this altitude the optimum Thrust values are identical for hoth types, namely, maximum in climb and
idle in descent. Above this attitude the thrust reduces gradually in climb for the free thrust case; it
continues to reduce duving the initial descent and veaches idle thrust at 20,000 ft. Bifferences in the
speed profiles also are noticeable onty above about 24,000 ft. As expected, the difference in operating costs
hetwaen the twoe types of trajectories {s sTight, amounting to an additional %8 saving for the 200-n. wi., free
thrust trajectory.

Minimum fuel trajectories, obtained by setting the time cost parameter Tn the performance function to
zero, are shown in Fig., 13, In comparison with the minimum DOC trajectories, the minimum fuel Trajectories
for a given range climb to a higher aititude and use a substantially Tower atrspeed above 10,000 ft. Alse,
above 10,000 ft the flight-path angle of the minimum fuel trajectories 1s steeper in ¢limb and shaliower in
descent. As before, differences in the altitude profiles hetween the constrained and unconsirained thrust
trajectories are apparent only near the top of the ¢limb. The penalty in fuel consumpltion due o the 250 KIAS
speed restriction below 10,000 ft was found to be 66 1b. This penalty increases with an increase in gross
weight but is essentially independent of range.

Table 1 summarizes several important numerical values for the trajectories calculated. Comparison of
tabultated figures shows that the fuel saved by flying the winimum fuel instead of the winimum DOC trajectory
is about 31,000 1b for the 1,000-n. wi. range, or about 1 Tb/n. mi. However, the asscciated time and cost
penalties are 16 min and $80, respectively. If the price of fuel continues to increase more rapidly than.the
cost of time, as was the case in 1979, the optimum DOC and fuel trajectories will converge, resulting in
smaller fuel and cost differences between them.

For the 200-n. wmi.-range minimum fuel trajectories, the differences in fuel consumption hetween the
constrained and free thrust cases is 23 1b. This relatively small difference would seem to justify the use
of the simplor-to-mechanize and computationally faster constrained thrust mode, especially in an onboard
computer implementation. However, as was pointed out in the preceding theory sections, this differgnce is
aitrcraft~ and propulsicon-model dependent and therefore should be checked whenever there is a change in model
characteristics.

CONCLUSIONS

The appreach presented here has established the structure of opiimum trajectories for airline cperations
and has yielded an efficient computer algorithm for calcuwlating them. The algorithm can be incorporated in an
airline flight planning system or can be used to determine the performance penalty of simplified onboard
algorithms. The latter application is important at this time in view of the current effort by industry to
develep ohboard performance mansgement systems.

Two pairs of opposing assumptions, constrained vs free thrust and dependence vs independence of specific
fuel constmption on thrust, played pivotal roles in determining the characteristics of the optimum trajectories,
If the assumption of specific fuel consumption independent of thrust is Justified, constrained thrust
trajectories arve identical im structure and performance to free thrust trajectories. However, when the
realistic dependence of specitic fuel consumption on thrust is taken into account, there will be a difference,
though slight for the example stidied, in both performance and structure between constrained and free thrust
cases. The actual differences in performance depend on the propulsion and aerodynamic models as well as other
factors and must be determined for each airovaft model by compuiter calculation.

APPENDIZ

1t is to be proved that the Joct of %f -:¥ =0and T~ D=0 are tangent at the cruise point, assuming
that the cruise point at T = To, V = ¥p s a wminimum of the oruise cost We/V along the lTocus T - 0= 0.
This i eguivalent to proving that the cruise point ties on both Tooi and that the slopes of the loci are
identical at that point.



That the cruise point satisfies Wg - AV = 8 follows from the sequence of relations below:

H W
: = -t _ = _f I o .3 =
{wf - AV)}?=?€ V(v j}szc vc ( T ) e, A VC(A x) =0

VY v=v, v=v_

To prove that the sitopes are identical, compute the gradient of ﬁf - AV

TSFC ]

v(wf - a¥) = %[%SFCV - “WT“J + 3 ﬁsgc? + S;q€
T=T, T=T,

‘\IWC \t'"—‘VC

(A1)

The perpendicular unit vectors i and 3 point in the speed and thrust directions, respectively. HNow

write 3 as a function of the perturbation aV¥:

po= DT+ D, aV)Se{T o+ D sV, v+ aV) /(Y + av) (A2)

Since, by assumption, % has a minimum at V = V., set the derivative of » with respect to sV equal to
zero. This yields the foltowing relation:

o= DVSFC + ?C (S?CTHV + SFCV) = TCSFC/VC (A3)
Next compute the gradient of (T - D)(V/W) at the cruise point:
v(T - B)(ww)]me = (VW (D) + §] (a4)
V*VC

The slope of Egq. (A1) relative to the i direction is given by

(TeSkc, * Src) (A5)
[TCSFCV . (TCSFC/VC)]

Slope =

After substituting Eq. (A3) in place of T/ Spp/Ve 1in Eq. (A5}, the slope simplifies to -1/Dy, which is
identical to the slope of Eq. (A4).
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TABLE 1. CHARACTERISTICS OF EXAMPLE OPTIMUM TRAJECTORIES

Thrust Range, Tine, Cost, Fuel, Cruise Climb Descent
made n. mi. hr/min/sec $/n. mi. Ih/n. mi. Altitude/fTt Distance/n. mi. Distance/n. mi
Minimum Direct Operating Cost Trajectories (150,000 ib Takeoff weight)
cT? 100 20:06 3.58 30.405 14699 43.18 52.66
Cr 200 3302 3.00 25,774 26970 161,42 77.85
?T’& 200 33:00 2.98 26.331 27827 116.00 84,00
cT 1000 2:13:67 2.28 18.779 30818 135.76 8h.38
Minimum Fuel Trajectories (150,000 1b Takeoff weight}
cY 106 21:25 3.60 29.247 17631 37.73 54,12
CT 200 37:03 3.07 24,35 27226 80.06 83.21
FT 200 37:06 3.06 74,268 2801 101.93 98.07
cT 1000 2:29:14 2.36 17.763 33188 121.07 103.5%
“CT = Constrained thrust.
}
“FT = Free thrust,
A
ENERGY' Bt 1= oo == 33
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i
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Fig. 1, Assumed structure of optimum trajectories. Fig. 3. Energy vs range, H > 0 at E..
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COST, ENERGY
BAMIRIUM
JEMERGY
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Fig. 2. Cruise cost function. Fig. 4. Energy vs vange, H =0 at F..
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Airspeed-altitude profiles for 200 n.m. range.
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